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We investigate the phase transition in a three-dimensional classical Heisenberg magnet with planar defects,
i.e., disorder perfectly correlated in two dimensions. By applying a strong-disorder renormalization group, we
show that the critical point has exotic infinite-randomness character. It is accompanied by strong power-law
Griffiths singularities. We compute various thermodynamic observables paying particular attention to finite-
size effects relevant for an experimental verification of our theory. We also study the critical dynamics within
a Langevin equation approach and find it extremely slow. At the critical point, the autocorrelation function
decays only logarithmically with time while it follows a nonuniversal power law in the Griffiths phase.
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I. INTRODUCTION

The influence of impurities, defects, or other types of
quenched disorder on the properties of phase transitions has
aroused the interest of physicists for more than three decades
�see Ref. 1 for an overview of some of the early work�.
Recently, this field has reattracted considerable attention as it
has become clear that disorder effects are generically much
stronger at zero-temperature quantum phase transitions than
at classical thermal phase transitions. This leads to uncon-
ventional phenomena such as power-law quantum Griffiths
singularities,2–4 infinite-randomness critical points with ex-
ponential rather than power-law scaling,5,6 or even smeared
phase transitions.7,8 A recent review of part of this physics
can be found in Ref. 9.

The main reason for the enhanced disorder effects at
quantum phase transitions is that the disorder is perfectly
correlated in imaginary time direction. Because imaginary
time acts as an extra dimension at a quantum phase transition
�and becomes infinitely extended at zero temperature�, one is
effectively dealing with defects that are “infinitely large” in
this extra dimension. Thus, they are much harder to average
out than conventional finite-size defects.

This implies that similarly strong effects can be expected
at a classical thermal phase transition if the disorder is per-
fectly correlated in one or more space dimensions. Indeed, it
has been known for a long-time that the McCoy-Wu model,
a classical two-dimensional Ising model with disorder per-
fectly correlated in one of the two dimensions, exhibits an
unusual phase transition. In a series of papers,10–13 McCoy
and Wu developed a transfer-matrix approach to this model
and showed that the specific heat is smooth across the ferro-
magnetic phase transition while the susceptibility is infinite
over an entire temperature range. Fisher5,6 later achieved an
essentially complete understanding of this transition by
means of a strong-disorder renormalization group �using the
equivalence between the McCoy-Wu model and the one-
dimensional random transverse-field Ising chain�. He found
that the critical point is of infinite-randomness type, and it is

accompanied by strong power-law Griffiths singularities.
Largely due to the fact that the McCoy-Wu model is difficult
to realize in nature, these predictions have �to the best of our
knowledge� not been experimentally verified yet.

In this paper, we present another classical system exhib-
iting an exotic infinite-randomness critical point, viz., a ran-
domly layered three-dimensional �3D� Heisenberg magnet.
This system is more easily realizable in experiment than the
McCoy-Wu model as it can be produced by depositing ran-
dom layers of two different ferromagnetic materials. More-
over, because of its three-dimensional character, it permits
bulk thermodynamic measurements. We investigate the
phase transition in this model by means of a strong-disorder
renormalization group which allows us to determine the criti-
cal behavior exactly.

Our paper is organized as follows: in Sec. II, we introduce
the randomly layered Heisenberg model and give heuristic
arguments for the strong disorder effects. In Sec. III we ex-
plain our theoretical approach. Results on the thermodynam-
ics are given in Sec. IV, while the experimentally important
finite-size effects are discussed in Sec. V. Section VI is de-
voted to the dynamical behavior at the phase transition. We
conclude in Sec. VII.

II. RANDOMLY LAYERED HEISENBERG MODEL

We consider a three-dimensional Heisenberg ferromagnet
consisting of a random sequence of layers made of two dif-
ferent ferromagnetic materials, as sketched in Fig. 1.

This system can be modeled by a classical Heisenberg
Hamiltonian on a cubic lattice given by

H = − �
r

Jz
��Sr · Sr+x̂ + Sr · Sr+ŷ� − �

r
Jz

�Sr · Sr+ẑ. �1�

Here, Sr is a three-component unit vector on lattice site r and
x̂, ŷ, and ẑ are the unit vectors in the coordinate directions.
The exchange interactions within the layers, Jz

�, and between
the layers, Jz

�, are both positive and independent random
functions of the perpendicular coordinate z.
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To develop a heuristic understanding of the randomly lay-
ered Heisenberg model, we first consider the case of all Jz

�

being identical, Jz
��J�, while the Jz

� are drawn from a bi-
nary probability distribution

P�J�� = �1 − p���J� − Ju� + p��J� − Jl� , �2�

with Ju�Jl. Here, p is the concentration of the “weak” layers
while 1− p is the concentration of the “strong” layers. More
general distributions will be considered in the next section.

Let us now discuss the behavior of the model �Eq. �1��
qualitatively �see Fig. 2�. At sufficiently high temperatures,
the system will be in a conventional �strongly disordered�
paramagnetic phase with a finite magnetic susceptibility
which increases upon lowering the temperature. Below a
temperature Tu �which is the transition temperature of a hy-
pothetical system containing strong layers only, Jz

� �Ju�, rare
thick slabs of strong layers develop local order while the
bulk system is still nonmagnetic. This is the weakly disor-
dered Griffiths phase. The Griffiths phase continues below
the actual critical temperature Tc down to a temperature Tl
�which is the transition temperature of a hypothetical system
containing weak layers only, Jz

� �Jl�. In the weakly ordered
Griffiths phase, bulk magnetism coexists with locally non-
magnetic slabs. Finally, below Tl, the system is in a conven-
tional �strongly ordered� ferromagnetic phase.

To estimate the strength of the Griffiths singularities in
this system, we need to compare the probability of finding a
thick slab of strong layers with the contribution such a slab
can make to thermodynamic quantities such as the suscepti-
bility. Simple combinatorics gives the probability for finding
a slab of LRR consecutive strong layers to be

w�LRR� � �1 − p�LRR = e−p̃LRR, �3�

with p̃=−ln�1− p�. Each such slab is equivalent to a two-
dimensional Heisenberg model with an effective exchange
interaction LRRJu. Because the two-dimensional Heisenberg
model is exactly at its lower critical dimension, the suscep-
tibility of the slab increases exponentially with the effective
interaction,9,14

��LRR� � ebLRR, �4�

where b increases with decreasing temperature. The same
result also follows from a renormalization-group analysis of
the corresponding nonlinear sigma model at its low-
temperature fixed point15 or from an explicit large-N calcu-
lation �as shown in the next section�.

Thus, the exponential decrease in the rare region prob-
ability w�LRR� with size LRR is compensated by an exponen-
tial increase in the contribution it makes to the susceptibility.
The total rare region susceptibility in the weakly disordered
Griffiths phase is obtained by simply summing over the con-
tributions of the individual rare regions. Up to pre-
exponential factors, this yields

�RR =	 dLRRe�b−p̃�LRR. �5�

The total rare region susceptibility thus diverges once b be-
comes larger than p̃. Other observables can be discussed
along the same lines. Equations �3�–�5� are analogous to the
corresponding relations for the McCoy-Wu model10–13 or �af-
ter quantum-to-classical mapping� to those of the random
transverse-field Ising model.2–4 This suggests that the phase
transition in our model displays unconventional behavior. In
the next section we investigate this question in detail by
means of a renormalization-group method.

III. STRONG-DISORDER RENORMALIZATION GROUP

In this section we study the ferromagnetic phase transition
of the randomly layered Heisenberg model by means of a
strong-disorder renormalization group.16,17 Our implementa-
tion of this method follows a recent study of dissipative
quantum phase transitions.18,19 We therefore only outline the
major steps of the calculation, details can be found in Ref.
19.

A. Order-parameter field theory

Our starting point is a Landau-Ginzburg-Wilson �LGW�
order-parameter field theory for an N-component order pa-
rameter ��r�. In the absence of disorder, the free-energy
functional reads

S =	 d3r��0�2�r� + �0
2��r��r��2 + u�4�r�� . �6�

Here, �0 is the bare distance from criticality, �0 is the bare
length scale, and u is the �4 coefficient. In the presence of
our layered disorder, �0, �0, and u become random functions
of the z coordinate �the coordinate perpendicular to the lay-

�
�

��

�

���

FIG. 1. �Color online� Schematic of the layered magnet: layers
of two different ferromagnetic materials are arranged in a random
sequence.

TTuTl Tc

SO SDWDWO

FIG. 2. �Color online� Schematic phase diagram of the ran-
domly layered Heisenberg magnet �Eq. �1��. SD and SO denote the
conventional strongly disordered and strongly ordered phases, re-
spectively. WD and WO are the weakly disordered and ordered
Griffiths phases. Tc is the critical temperature while Tu and Tl mark
the boundaries of the Griffiths phase.
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ers� and the derivative term will generally be anisotropic. In
order to apply the real-space-based strong-disorder renormal-
ization group, we discretize the continuum LGW theory �Eq.
�6�� in the z direction but not in the xy plane. For simplicity,
we first consider the large-N limit of our LGW theory which
allows us to perform all of the following calculations explic-
itly. We will later show that the resulting critical point is the
same for all N�2 including the physically relevant Heisen-
berg case N=3. The discrete large-N order parameter field
theory reads as

S = �
z,q

��z + �z + �z
2q2�
�z�q�
2 − �

z,q
Jz

��z�q��z+1�− q� ,

�7�

where q is a two-component vector describing the xy mo-
mentum. The Lagrange multipliers �z enforce the large-N
constraints ���z

�k��2�=1 for the kth order-parameter compo-
nent in layer z; they have to be determined self-consistently.
The renormalized local distance from criticality in layer z is
given by �z=�z+�z. In the disordered phase, all �z�0. For
the case of a single layer, the LGW theory �Eq. �7�� can be
solved immediately, giving

�z = �z
2	2e−4
�z

2/a2
, �8�

with 	 being a momentum cutoff and a as the lattice con-
stant.

B. Recursion relations

The basic idea of the strong-disorder renormalization
group is to successively integrate out local high-energy de-
grees of freedom. In the LGW theory �Eq. �7��, the compet-
ing local couplings are the local distances from criticality �z
and the interactions Jz

�. In the bare theory, they are indepen-
dent random variables with distributions R0��� and P0�J��,
respectively. The method relies on these distributions being
broad and becomes exact in the limit of infinitely broad dis-
tributions. We will verify this condition a posteriori.

In each renormalization-group step, we choose the largest
local coupling �=max�z ,Jz

��. If it is a distance from criti-
cality, say �2, the unperturbed part of the free energy is S0
=�q��2+�2

2q2�
�2�q�
2. The coupling of �2 to the neighbor-
ing layers, S1=−�q�J1

��1�q��2�−q�+J2
��2�q��3�−q��, is

treated perturbatively. Keeping only the leading long-
wavelength terms that arise in second order of the cumulant

expansion, we obtain renormalized interactions S̃=

−�qJ̃1
��1�q��3�−q� with

J̃1
� =

J1
�J2

�

�2
. �9�

At the end of the renormalization-group step, �2 is dropped
from the action.

If the largest local energy is an interaction, say J2
�, we

solve the two-layer problem S0=�q�z=2,3��z+�z
2q2�
�z�q�
2

−�qJ2
��2�q��3�−q� exactly while treating the interactions

with the neighboring layers as perturbations. For J2
���2, �3,

the two fields �2 and �3 are essentially parallel; thus they

can be replaced by a single field �̃2 with an effective renor-

malized free-energy functional S̃=�q��2̃+ �̃2
2q2�
�2

˜ �q�
2.
After a straightforward but somewhat lengthy

calculation,19 the effective distance from criticality of the
combined layer comes out to be

�̃2 = 2
�2�3

J2
� , �10�

while the length scale parameter renormalizes as �2
2̃=�2

2

+�3
2. The renormalized field represents a layer with effective

moment per site

̃2 = 2 + 3. �11�

The interactions of the combined layer with the neighboring
layers are not renormalized. The net result of the
renormalization-group step is the elimination of one layer
and the reduction in the energy scale �.

The structure of the renormalization-group recursion rela-
tions �9�–�11� is identical to those of the one-dimensional
random transverse-field Ising model5,6 as well as the dissipa-
tive quantum rotor model.18,19 Consequently �and somewhat
surprisingly�, the thermal phase transition in our randomly
layered classical three-dimensional Heisenberg model be-
longs to the same universality class as the quantum phase
transitions in the one-dimensional random transverse-field
Ising model and the dissipative quantum rotor chain.

At first glance, this result seems to suggest that crucial
system characteristics such as order-parameter symmetry and
dimensionality are rendered unimportant by the strong-
disorder renormalization group. However, the physics turns
out to be more subtle. The fact that our randomly layered
Heisenberg model and the random transverse-field Ising
chain are in the same universality class is due to a nontrivial
interplay between the order parameter symmetry and the de-
fect dimensionality. We will discuss this point in more detail
in Sec. VII in the context of a general classification of phase
transitions in the presence of disorder.

C. Fixed points

The renormalization-group step outlined in the last sub-
section does not change the lattice topology because we re-
move a full layer in each step. Moreover, the surviving � and
J� remain statistically independent. The theory can therefore
be formulated in terms of individual probability distributions
P�J�� and R���. Fisher derived flow equations for these dis-
tributions and solved them analytically.5,6 They have three
kinds of nontrivial fixed points representing the weakly or-
dered and disordered Griffiths phases as well as the critical
point in between. At the critical fixed point, the relative
width of the distributions P�J�� and R��� diverges, justifying
the method and giving the critical point its name, infinite-
randomness critical point.

The critical behavior is characterized by three exponents,
�=2, �=1 /2, and �= �1+�5� /2. The exponent � controls
how the perpendicular correlation length �� diverges as the
critical point is approached
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�� � 
�
−�. �12�

�� characterizes the spatial correlations perpendicular to the
layers �in z direction�. � is the fully renormalized distance
from the critical point; it is given by ���ln���−ln�J���0 in
terms of the bare variables �� · �0 denotes the average over the
bare disorder distributions.�

The exponent � �which is sometimes called the tunneling
exponent because of its meaning in the quantum problem of
Refs. 5 and 6� relates the perpendicular correlation length ��

and the correlation length �� within the layers. The scaling is
highly anisotropic,

ln���/a� � ��
� . �13�

� also controls the density n� of layers surviving at energy
scale � in the renormalization procedure. The scaling form
of this variable is given by19

n���� = �ln��I/���−1/�Xn���� ln��I/��� , �14�

where �I is a constant of the order of the initial �bare� value
of �. The scaling function behaves as Xn�0�=const and
Xn�y→���y1/�e−cy, where c is a constant. As a result, the
layer density decreases as n���ln��I /���−1/� at criticality
while it behaves as n�����1/z in the disordered Griffiths
phase ���0�. The nonuniversal exponent z varies as z
��−�� in the Griffiths phase.

The exponent � determines how the typical moment �

per site of a surviving layer depends on the energy scale �.
The scaling form of � reads as

���� = �ln��I/����X���� ln��I/��� . �15�

The scaling function behaves as X�0�=const and X�y
→���y1−�. Thus, at criticality the typical moment increases
as ���ln��I /���� while it behaves as �

�����1−�� ln��I /�� in the disordered Griffiths phase.

IV. THERMODYNAMICS

The overall strategy6 for computing the behavior of ther-
modynamic observables consists in running the strong-
disorder renormalization group from the initial energy scale
�I down to the energy scale set by an external perturbation
such as a magnetic field. The high-energy degrees of free-
dom eliminated in this way do not make significant contri-
butions to the long-wavelength physics. The surviving layers
are very weakly coupled and can be treated as independent.
In this section we show that the resulting thermodynamic
behavior of our system is similar to that at an infinite-
randomness quantum critical point. However, there are sig-
nificant differences due to the fact that we are dealing with a
thermal �classical� phase transition.

A. Single-layer results

We start by considering a single layer with effective mo-
ment  per site in an external magnetic field �i.e., this layer
is the result of combining  original layers during the renor-
malization group�. The free-energy functional is given by

Sl = �
q

�� + � + �2q2�
��q�
2 − �
q

h�q���− q� , �16�

where h�q� is the Fourier transform of the external field at
wave vector q. This theory is Gaussian, thus the partition
function and free energy are easily calculated. For a uniform
magnetic field h, the free energy reads as Fl�h�=�qln��
+�2q2�−L�

22h2 /4�. Here �=�+� as before, and L� is the
linear size of the layer. The value of the Lagrange multiplier
� follows from the large-N constraint

��2� =
1

L�
2

�Fl

��
=

1

L�
2�

q

1

� + �2q2 +
2h2

4�2 = 1. �17�

For small fields, h���h=0�, the first term in the sum domi-
nates, yielding ��h�=��0�+O�h2� with ��0� given by Eq. �8�.
In the opposite limit, h���h=0�, the second term domi-
nates, resulting in ��h�=h /2.

The magnetization of the single layer is easily computed
by taking the appropriate derivative of the free energy

ml = − �1/L�
2���Fl/�h�� = 2h/2� , �18�

and the zero-field uniform susceptibility is given by

�l = 2/2��0� . �19�

Other observables can be computed in an analogous fashion.
For instance, the local susceptibility �l,loc takes the same
form as Eq. �19� with 2 replaced by .

B. Critical point and weakly disordered Griffiths phase

We now combine the single-layer observables with the
strong-disorder renormalization-group results for the density
�Eq. �14�� and the moment �Eq. �15�� of the surviving layers.
In the present subsection we focus on the critical point and
the disordered Griffiths phase while the ordered Griffiths
phase will be addressed in Sec. IV C.

The total magnetization in a magnetic field h can be ob-
tained by running the renormalization group to the energy
scale �h=�h

h. All the surviving layers have ��h and are
thus fully polarized. The total magnetization per site thus
reads as

m��,h� = n�h
����h

���

= �ln��I/�h���−1/��m���� ln��I/�h�� . �20�

The scaling function is given by �m�y�=Xn�y�X�y�. Now,
using the fact that �h=�h

h, we find m��ln��I /h���−1/�

�with double-logarithmic corrections� at criticality, �=0.

This implies that the critical isotherm exponent �̄ �com-

monly defined via m�h1/�̄� is formally infinite. In
the Griffiths phase, ��0, we obtain m
�h1/z��+���1−���1+1/z��ln��I /h��1+1/z. As long as z��−�� is
larger than one �i.e., sufficiently close to the critical point�
this contribution dominates the regular linear-response term.
We thus find a nonuniversal power-law singularity in a finite
temperature interval around the critical point.

In the zero-field limit, the uniform susceptibility
�=�m /�h�h1/z−1 consequently diverges not just at the criti-
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cal point but for all z�1, again in an entire temperature
range around the critical point. This result can also be ob-
tained by summing Eq. �19� over all layers using the spectral
density ����=dn� /d� 
�=�. In the Griffiths phase this gives
the following rare region contribution to the susceptibility

��h → 0� � � � �z � 1�
z

1 − z
�I

1/z−1 �z � 1� .� �21�

The specific heat can be obtained by summing the single-
layer free energy Fl over the spectral density ���� and taking
the appropriate derivatives with respect to the reduced tem-
perature. As in the McCoy-Wu model, the resulting specific
heat is smooth across the transition.

C. Weakly ordered Griffiths phase

While the order parameter symmetry does not play a sig-
nificant role on the disordered side of the critical point where
all conventional �non rare-region� excitations are gapped, it
becomes important on the ordered side of the transition
where gapless excitations exist even in the absence of our
rare region physics. This leads to some minor differences
between our results and those of the McCoy-Wu model.

To determine the spontaneous magnetization on the or-
dered side of the transition, we follow the strong-disorder
renormalization-group flow from �I toward �=0. For small
but nonzero 
�
, i.e., close to the critical point, the flow ini-
tially follows the critical trajectory until the renormalization-
group length scale reaches the correlation length ���
�
−�.
This occurs at an energy �� given by ln��I /������

�

�
�
−��. Beyond this scale, the system is essentially ordered,
and almost no layers will be removed under further action of
the renormalization group.

We can therefore find the spontaneous magnetization by
counting how many of the original layers survive at length
scale ��. This leads to

m � n��
��

� �ln��I/�����−1/� � 
�
��1−���. �22�

The order-parameter critical exponent thus takes the value
�=��1−���. In a small magnetic field h, the magnetization
picks up a nonanalytic correction which can be computed
following the methods of Ref. 6. We find

m�h� − m�0� � h1/�1+z�, �23�

implying that the �longitudinal� susceptibility �=�m /�h
�h−z/�z+1� diverges in the zero-field limit everywhere in the
weakly ordered Griffiths phase. �The transverse susceptibil-
ity is infinite everywhere in the ordered phase simply be-
cause of the continuous order-parameter symmetry.�

Another important property of the ordered phase of a con-
tinuous symmetry magnet is the spin-wave stiffness which
can be defined via the change in the free energy with a twist
in the boundary conditions. In our system, we must distin-
guish the parallel spin-wave stiffness from the perpendicular
one. To find the parallel spin-wave stiffness �s

�, we apply
boundary conditions at x=0 and x=L� such that the spins at
the two ends are at a relative angle �. In the limit of small �

and large L�, the free-energy density f depends on � as

f��� − f�0� =
1

2
�s

���

L�
�2

, �24�

which defines �s
�.

In our system, the free-energy cost due to the twist is
simply the sum over all layers participating in the long-range
order. Each layer has the same twisted boundary conditions
and the perpendicular bonds �which are not twisted� do not
contribute. The bare stiffness of a single layer is given by �2.
Because �2 is additive under the strong-disorder renormal-
ization group, �s

� behaves like the layer moment per site, �s
�

�. The calculation of the total parallel spin-wave stiffness
thus proceeds analogously to the total magnetization yielding

�s
� � �0

2
�
� = �0
2
�
��1−���. �25�

If a global twist is applied perpendicular to the layers, i.e.,
between the bottom �z=0� and top �z=L�� of the stack, the
local twist �z between layers z and z+1 will vary from layer
to layer according to the local Jz

�. The total free-energy cost
can be written as

f��� − f�0� �
1

2L�
�

z

�z�z
2, �26�

with �z�Jz
�. Minimizing f���− f�0� under the constraint

�z�z=� gives �z�1 /�z and

f��� − f�0� � �L��
z

�z
−1�−1

. �27�

To obtain an upper bound for f���− f�0�, we estimate �z�z
−1

by its largest contribution, �min
−1 ��Jmin

� �−1. In the weakly or-
dered Griffiths phase, the fixed-point distribution of J� is
gapless,6 and Jmin

� vanishes as L�
−z in the thermodynamic limit

L�→�. We conclude f���− f�0��L�
−1−z, implying that the

global perpendicular stiffness vanishes, �s
�=0 �for z�1�.

The weakly ordered Griffiths phase is thus very peculiar be-
cause the system displays long-range ferromagnetic order but
it has no �perpendicular� spin-wave stiffness.

V. FINITE-SIZE EFFECTS

The results in Sec. IV were for an infinite system �in the
thermodynamic limit�. Here, we briefly discuss the effects of
a finite system size in either parallel or perpendicular direc-
tion.

We start with a finite in-plane �parallel� size L�. It plays
the same role as a finite temperature in the quantum phase
transitions in Refs. 5, 6, 18, and 19 where the inverse tem-
perature is the system size in imaginary time direction. Solv-
ing the large-N constraint for a single layer of linear size L�

gives ��L��=����+O�1 /L�
2� for �����1 /L�

2. Here, ���� is
the thermodynamic limit result given in Eq. �8�. In the op-
posite limit, �����1 /L�

2, we obtain ��L��=1 /L�
2. Thus, a fi-

nite L� cuts off the low-� tail in the spectral density ����.
As an example of the resulting finite-size effects in ther-

modynamic quantities we now discuss the dependence of the
susceptibility on L�. Within the strong-disorder renormaliza-
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tion group, it can be found by running the renormalization
group to the scale �L=1 /L�

2. Beyond that scale, � is not
renormalized further down. All surviving layers now have
��J� and can thus be treated as independent. Using Eq.
�19�, the uniform susceptibility of a system of size L� is
consequently given as the sum over all layers surviving at
scale �L,

���,L�� = n�L
����L

2 ���/2�L. �28�

At criticality, �=0, this leads to ��L�
2�ln�L� /a��2�−1/�. We

emphasize that � is the susceptibility per volume, so L�
2 is not

simply a geometric factor but indicates the divergence of the
susceptibility in the thermodynamic limit. In the weakly dis-
ordered Griffiths phase, the same calculation gives �up to
logarithmic corrections� a nonuniversal power-law depen-
dence, ����+2���1−��L�

2−2/z. In the weakly ordered Griffiths
phase, we need to take into account that long-range order is
not possible for any finite L�. Thus all layers surviving at
scale �L will again contribute to the susceptibility. In con-
trast to the weakly disordered Griffiths phase, the typical
moment of a layer is proportional to its thickness �L
�m0n�L

−1 , where m0 is the bulk magnetization. In the weakly
ordered Griffiths phase, we thus obtain ����−���L�

2+2/z. All
of our results for the L� dependence of the uniform suscep-
tibility are completely analogous to the corresponding tem-
perature dependencies at the quantum phase transition in the
random transverse-field Ising chain in Ref. 6. They are also
compatible with finite-size scaling using that 1 /L�

2 scales like
� �or, equivalently, like a magnetic field H�. Other observ-
ables can be worked out in a similar fashion.

We now turn to the effects of a finite size L� in perpen-
dicular direction, i.e., the effects of a finite number of layers
in our stack. We expect these effects to be particularly im-
portant experimentally because growing samples containing
a macroscopic number of layers will often be difficult. The
origin of finite-size effects in L� is that finite-size samples do
not contain rare regions �strongly coupled layers� beyond a
certain thickness or, equivalently, they do not contain rare
regions with ���min�L��.

Within the strong-disorder renormalization group, the re-
lation between system size and the cut-off energy scale
�min�L�� can be worked out using the density of surviving
layers n�. In a typical sample of size L�, the number of
layers surviving at renormalization-group scale � is given by
L�n�. The cut-off scale is thus defined by L�n�min

=1. At
criticality, this implies

ln��I/�min� � L�
� �29�

reflecting the activated character of finite-size scaling in per-
pendicular direction. In the two Griffiths phases, we obtain

�min � 
�
−�zL�
−z. �30�

As the first example of the resulting finite-size effects in
thermodynamic quantities, we consider the magnetization-
field curve m�h�. To do so, we compare the field-induced
renormalization-group cutoff �h=�h

h and the finite-size
cutoff �min. As long as �h��min, the finite system size L�

has only a negligible effect on the magnetization. However,

L�, cuts off the nonlinear low-field tail of m�h� once �h
��min. At criticality, this happens for fields below hmin
given by ln��I /hmin��L�

� . In the weakly disordered Griffiths
phase, the nonlinear m�h� curve is cut off below hmin
��−�z−���1−��L�

−z. In the weakly ordered Griffiths phase, the
calculation is slightly more involved because we first need to
resolve the relation between �h=�h

h using �h
�m0n�h

−1 ,
where m0 is the bulk magnetization. We finally obtain hmin
�
�
���−��1+z�L�

−�1+z�.
The zero-field susceptibility of a typical sample of per-

pendicular size L� can be calculated by summing Eq. �19�
over all layers with the spectral density ���� cut off at �
=�min. Alternatively, it can be estimated by ��m /�h�hmin

. At
criticality, the susceptibility diverges exponentially with sys-
tem size, ��exp�AL�

� � with A as a constant. In the weakly
disordered Griffiths phase, we find a nonuniversal power law,
���1+�z+2���1−��L�

z−1.
Finally, we discuss the finite-size behavior of the perpen-

dicular spin-wave stiffness �s
� in the weakly ordered Grif-

fiths phase. In Sec. IV C, we showed that �s
� vanishes in the

thermodynamic limit because the fixed-point distribution of
J� is gapless. A finite perpendicular size L� establishes a
lower bound for J� in a typical sample. From Eq. �30� we
obtain Jmin

� �L�
−z. Thus, the perpendicular spin-wave stiffness

of a typical sample vanishes as �s
��L�

1−z with increasing
system size �for z�1�.

VI. CRITICAL DYNAMICS

It is well known that dynamic critical phenomena show
stronger rare region effects and Griffiths singularities than
the corresponding thermodynamic critical phenomena at
classical phase transitions. In particular, rare regions domi-
nate the long-time dynamics in a conventional classical Grif-
fiths phase20–23 even though they provide only small correc-
tions to the thermodynamics. In this section, we therefore
study the critical dynamics in our randomly layered Heisen-
berg magnet.

The classical Heisenberg model does not have any inter-
nal dynamics, we therefore add a phenomenological dynam-
ics to our system. Here, we focus on the simplest case, a
purely relaxational dynamics corresponding to model A in
the classification of Hohenberg and Halperin.24 Microscopi-
cally, this type of dynamics can be realized, e.g., via the
Glauber25 or Metropolis26 algorithms. Other dynamical algo-
rithms can be studied using similar methods �including
model J which describes the dynamics of real Heisenberg
spins�. This remains a task for the future.

To characterize the dynamic critical behavior, we calcu-
late the average autocorrelation function

C�t� =
1

L�L�
2	 d3r���r,t���r,0�� , �31�

where ��r , t� is the order parameter at position r and time t.
In addition, we also determine the dynamic susceptibility
����.

Let us begin by considering the dynamics of a single layer
with moment  per site and a renormalized local distance �
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from criticality. Because a single layer cannot display long-
range order, the correlations decay exponentially in time. The
dependence of the correlation �relaxation� time �t on � can be
found following the heuristic arguments of Bray.22 He con-
sidered a correlation volume ��

2�1 /� which he assumed to
be in the magnetic state with total magnetization M0���

2

� /�. The relaxation of the magnetization occurs mainly
via diffusion of the order-parameter vector on a sphere of
radius 
M0
 due to thermal noise �because there are no energy
barriers in the case of Heisenberg symmetry�. The noise at
different points in space and time adds incoherently. Thus,
according to the central limit theorem, the change in magne-
tization after time t is �M�t�� t1/2� /��1/2. Defining �t as the
time when �M��t��M0, we obtain

�t��� � /� . �32�

At criticality and in the weakly disordered Griffiths phase, 
only provides logarithmic corrections to the leading 1 /� de-
pendence.

The same result can also be obtained more formally from
the single-layer Langevin equation

���q,t�
�t

= − 2�0�� + �2q2���q,t� + �0h�q,t� + ��q,t� ,

�33�

where h�q , t� is a time-dependent magnetic field, ��q , t� is
the usual �-correlated noise and �0 fixes the overall time
scale. To find the autocorrelation function of a single layer,
we solve Eq. �33� for h�q , t�=0 and insert the solution into
Eq. �31�. In the asymptotic long-time limit, �0�t�1, we find

Cl�t� � exp�− 2�0�t�/��0�t� , �34�

in agreement with the heuristic estimate �Eq. �32��. Solving
the Langevin equation in the presence of a field allows us to
calculate the single-layer dynamic susceptibility �l�q ,��
=�m�q ,�� /�h�q ,��. For a uniform field, q=0, this results in

�l��� = 2/�2� − i�/�0� . �35�

After having discussed the single-layer dynamics, we now
turn to the full system. To find the average autocorrelation
function at time t, we run the strong-disorder renormalization
group to the scale �t=1 / t. All layers eliminated during this
procedure have correlation times �t� t and do not contribute
to the autocorrelation function. Surviving layers have �t� t,
they thus contribute proportional to their moment  per site,
giving C�t��n�t

�t
. At criticality, this leads to an ultraslow

logarithmic decay of the autocorrelation function,

C�t� � �ln�t/t0���−1/�, �36�

with t0 as a microscopic time scale. In the weakly disordered
Griffiths phase, the same calculation yields, up to logarith-
mic corrections, a nonuniversal power law

C�t� � ��+���1−��t−1/z. �37�

The same time dependence also follows from averaging Eq.
�34� over the spectral density ����. The power-law decay
�Eq. �37�� is much slower than the stretched exponential
found in conventional classical Griffiths phases.20–23 Interest-

ingly, Eqs. �36� and �37� are reminiscent of the behavior at
certain classical nonequilibrium phase transitions with
disorder.27–29

The uniform dynamic susceptibility can be computed in
an analogous manner. At criticality, we find its imaginary
part to behave as

����� �
1

�
�ln��0/���2�−1/�. �38�

In the weakly disordered Griffiths phase, we again obtain a
power law,

����� � ��+2���1−���1/z−1. �39�

For the local dynamic susceptibility �loc���, the correspond-
ing relations are �1 /���ln��0 /����−1/� and ��+���1−���1/z−1 at
criticality and in the Griffiths phase, respectively.

At first glance, the above results for C�t� and ��loc���
appear to violate the fluctuation dissipation theorem which
requires ��loc���= �� /2T�C���, where C��� is the Fourier
transform of the autocorrelation function. The reason for the
disagreement is that the relaxation time �Eq. �32�� diverges
for the largest rare regions �which correspond to effective
layers with the smallest ��. Thus, the layers that dominate the
long-time tail of C�t� are not in equilibrium, and the
fluctuation-dissipation theorem is not applicable. Technically,
the disagreement is caused by the fact that Eq. �34� cannot be
used for the layers with the smallest � at any finite time.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have investigated the phase transition in a
three-dimensional randomly layered classical Heisenberg
magnet. We have employed a strong-disorder renormaliza-
tion group to show that the critical point is of unconventional
infinite-randomness character. Somewhat surprisingly, the
critical behavior can be found exactly, making our system
one of the very few examples of three-dimensional systems
with exactly known critical exponents. The critical point is
accompanied by strong power-law Griffiths singularities
�which are often called quantum Griffiths singularities be-
cause they generically occur in quantum systems but not in
classical systems�. In addition to the thermodynamics, we
have also studied the critical dynamics within model A of the
Hohenberg-Halperin classification. It is characterized by an
ultraslow relaxation of the magnetic correlations at criticality
as well as in the Griffiths phase.

Our findings can be related to a broader classification9,14

of phase transitions with quenched disorder. This classifica-
tion is based on the effective dimensionality of the defects or,
equivalently, the rare regions. Three classes can be distin-
guished: �i� if the defect dimensionality is below the lower
critical dimension dc

− of the problem, the resulting critical
point is conventional, and the Griffiths singularities are ex-
ponentially weak. �ii� If the defect dimensionality is exactly
equal to the lower critical dimension, the critical point is of
infinite-randomness type and accompanied by power-law
“quantum” Griffiths singularities. �iii� Finally, if the defects
are above the lower critical dimension, individual regions
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can order independently, leading to a smeared transition.
The randomly layered Heisenberg magnet falls into class

�ii� because the dimensionality of the planar defects is two,
identical to the lower critical dimension of the classical
Heisenberg model. The results of this paper are therefore in
complete agreement with the general classification. It is
worth noting, that the behavior of a randomly layered Ising
magnet is very different. The lower critical dimension of a
classical Ising model is one, thus planar defects are above the
lower critical dimension. Consequently, the phase transition
in a randomly layered Ising magnet is smeared by the
disorder.30,31

We emphasize that the above classification also helps re-
solve the puzzling question posed at the end of Sec. III B,
viz., why systems as different as the randomly layered
Heisenberg magnet and the McCoy-Wu model �or, equiva-
lently, the random transverse-field Ising chain� end up in the
same universality class. The crucial point is that even though
these two systems have different order parameter symmetries
and dimensionalities, the defects are exactly at the lower
critical dimension in both cases: dc

−=2 for the classical
Heisenberg model and dc

−=1 for the Ising model. These ar-
guments demonstrate why both the McCoy-Wu model and
our randomly layered Heisenberg model end up having
infinite-randomness critical points and thus the same scaling
scenario; they do not yet explain why the two systems share
the same critical exponent values. The agreement of the ex-
ponent values follows from the fact that both systems are
random in one direction which leads to coarse graining in
one dimension within the strong-disorder renormalization
group. Moreover, the renormalization-group fixed point only
depends on the multiplicative structure the recursion rela-
tions �9� and �10� and not on model-dependent prefactors.

Our explicit calculations have been performed in the
large-N limit of the order parameter field theory �Eq. �6��.
However, the critical fixed point stays valid for all N�2
including the case of Heisenberg symmetry, N=3. To see
this, we need to confirm that the recursion relations �9� and
�10� remain unchanged for any N�2. The multiplicative
structure of the recursion �Eq. �9�� for J� follows directly
from second order perturbation theory and is thus the same
for all N. In contrast, the multiplicative structure of the re-
cursion relation �10� for the renormalized distance � from
criticality follows from the fact that a single layer of a con-
tinuous symmetry order parameter �N�2� is exactly at the
lower critical dimension. This implies an exponential depen-

dence of � on the moment of the effective layer and thus the
multiplicative form of Eq. �10�; for details see the corre-
sponding discussion in Ref. 19. Consequently, up to unim-
portant prefactors, both recursion relations remain valid for
any N�2 and with them the infinite-randomness critical
point scenario found in this paper.

The strong-disorder renormalization group allowed us to
identify the infinite-randomness fixed point and verify its
stability. However, it cannot tell whether or not a weakly or
moderately disordered system will flow toward this fixed
point. This is due to the fact that for weak disorder, the
renormalization-group recursions are not very accurate. To
gain further insight, it is useful to look at the behavior in the
weak disorder limit. The effects of weak disorder on a clean
critical point are governed by the Harris criterion32 that states
that the clean fixed point is stable against disorder if its cor-
relation length exponent � fulfills the inequality dr��2,
where dr is the number of dimensions in which there is ran-
domness. In our case, dr=1 and the correlation length expo-
nent of the clean 3D Heisenberg model is33 ��0.711. There-
fore, the clean 3D Heisenberg critical point violates the
inequality dr��2 implying that it is unstable against weak
planar disorder. �It is also unstable against linear disorder,
dr=2 �see Ref. 34�, but stable against the usual point disor-
der, dr=3.� Within a renormalization-group approach this
means that weak planar disorder initially increases under
renormalization suggesting that our fixed point may control
the critical behavior for all bare disorder strength. A more
complete answer to this question will likely come from ex-
periment and computer simulations.

Experimental verifications of infinite-randomness critical
behavior and the accompanying power-law “quantum” Grif-
fiths singularities have been hard to come by, in particular in
higher-dimensional systems. Only very recently, promising
measurements have been reported35,36 of the quantum phase
transitions in CePd1−xRhx and Ni1−xVx. We hope that our
work opens an alternative avenue to observe these phenom-
ena in systems that may be easier to study experimentally.
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